RUS  ENG
Full version
JOURNALS // Proceedings of the Yerevan State University, series Physical and Mathematical Sciences // Archive

Proceedings of the YSU, Physical and Mathematical Sciences, 1985 Issue 3, Pages 10–15 (Mi uzeru1065)

Mathematics

Expansion in some systems of rational functions

A. A. Kitbalyan

Yerevan State University

Abstract: Let $\{ \alpha_k\}_t^\infty$ be an arbitrary sequence of complex numbers lying in the unit disk: $|\alpha_k|<1 (k\in N)$. We consider a system of rational functions with poles at the points $z=\alpha_k$ and $z=1/\sqrt{\alpha_k} (k\in N)$:
$$P_n(z)=\dfrac{z^2}{( 1-z)^4}[\pi_n(z)+\pi_n^{-1}(z)-2]^2,$$
where $\pi_n(z)=\prod\limits_{k=1}^n\dfrac{z-\alpha_k}{1-\overline{\alpha_k}z}\cdot\dfrac{1-\overline{\alpha_k }}{1-\alpha_k} (n\in N).$ The following theorem is proved. If the series $\sum\limits_{n=1}^\infty (1-|\alpha_n|)$ diverges, then for any function $f(z)$ continuous on the unit circle, the sequence rational functions $f_n(z)$ converges to $f(z)$ uniformly on the unit circle.

UDC: 517.53

Received: 18.09.1984
Accepted: 20.12.1985



© Steklov Math. Inst. of RAS, 2026