RUS  ENG
Full version
JOURNALS // Ural Mathematical Journal // Archive

Ural Math. J., 2025 Volume 11, Issue 2, Pages 183–199 (Mi umj266)

Two modified conjugate gradient methods and their application to image restoration problems

Mehamdia Abd Elhamida, Yacine Chaibb, Hisham M. Khudhurc, Raouf Ziadid

a Université of M’hamed Bougara
b Mohamed-Cherif Messaadia University - Souk Ahras
c College of Computer Science and Mathematics, University of Mosul
d Université Ferhat Abbas de Sétif

Abstract: Conjugate gradient methods have significantly contributed to the discovery of minimizes of large-scale unconstrained optimization problems. In this paper, based on the Liu–Storey conjugate gradient method, two modified conjugate gradient methods (named MC1 and MC2 methods) are presented for unconstrained optimization. Under usual assumptions, the two presented methods are proven to be sufficient descent at each iteration. The global convergence results of our methods is established using the strong Wolfe line search (SWLS). Numerical tests demonstrate the effectiveness of the MC1 and MC2 methods when compared to certain existing methods in view of the Dolan and Moré performance profile. Furthermore, the practical applications of these methods in image restoration problems is also considered.

Keywords: Unconstrained optimization, Conjugate gradient method, Analyse convergence, Numerical comparisons

Language: English

DOI: 10.15826/umj.2025.2.013



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026