RUS  ENG
Full version
JOURNALS // Ural Mathematical Journal // Archive

Ural Math. J., 2022 Volume 8, Issue 2, Pages 4–12 (Mi umj168)

This article is cited in 2 papers

Bessel polynomials and some connection formulas in terms of the action of linear differential operators

Baghdadi Aloui, Jihad Souissi

University of Gabes

Abstract: In this paper, we introduce the concept of the $\mathbb{B}_{\alpha}$-classical orthogonal polynomials, where $\mathbb{B}_{\alpha}$ is the raising operator $\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}$, with nonzero complex number $\alpha$ and $\mathbb{I}$ representing the identity operator. We show that the Bessel polynomials $B^{(\alpha)}_n(x),\ n\geq0$, where $\alpha\neq-{m}/{2}, \ m\geq -2, \ m\in \mathbb{Z}$, are the only $\mathbb{B}_{\alpha}$-classical orthogonal polynomials. As an application, we present some new formulas for polynomial solution.

Keywords: classical orthogonal polynomials, linear functionals, Bessel polynomials, raising operators, connection formulas.

Language: English

DOI: 10.15826/umj.2022.2.001



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026