RUS  ENG
Full version
JOURNALS // Ural Mathematical Journal // Archive

Ural Math. J., 2020 Volume 6, Issue 2, Pages 15–24 (Mi umj122)

This article is cited in 3 papers

Hahn's problem with respect to some perturbations of the raising operator $(X-c)$

Baghdadi Aloui, Jihad Souissi

Université de Gabès

Abstract: In this paper, we study the Hahn's problem with respect to some raising operators perturbed of the operator $X-c$, where $c$ is an arbitrary complex number. More precisely, the two following characterizations hold: up to a normalization, the $q$-Hermite (resp. Charlier) polynomial is the only $H_{\alpha,q}$-classical (resp. \linebreak $\mathcal{S}_{\lambda}$-classical) orthogonal polynomial, where $H_{\alpha, q}:=X+\alpha H_q$ and $\mathcal{S}_{\lambda}:=(X+1)-\lambda\tau_{-1}$.

Keywords: orthogonal polynomials, linear functional, $\mathcal{O}$-classical polynomials, Raising operators, $q$-Hermite polynomials, Charlier polynomials.

Language: English

DOI: 10.15826/umj.2020.2.002



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026