RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2024 Volume 16, Issue 2, Pages 67–76 (Mi ufa693)

On mean–square approximation of functions in Bergman space $B_2$ and value of widths of some classes of functions

M. Sh. Shabozova, D. K. Tukhlievb

a Tajik National University, Rudaki av. 17, 734025, Dushanbe, Tajikistan
b Khujand State University

Abstract: Let $A(U)$ be a set of functions analytic in the circle $U:=\{z\in\mathbb{C}, |z|<1\}$ and $B_{2}:=B_{2}(U)$ be the space of the functions $f\in A(U)$ with a finite norm
$$\|f\|_{2}=\left(\frac{1}{\pi}\iint_{(U)}|f(z)|^{2} d\sigma\right)^{\frac{1}{2}}<\infty,$$
where $d\sigma$ is the area differential and the integral is treated in the Lebesgue sense. In the work we study extremal problems related with the best polynomial approximation of the functions $f\in A(U)$. We obtain a series of sharp theorems and calculate the values of various $n$–widths of some classes of functions defined by the continuity moduluses of $m$th order for the $r$th derivative $f^{(r)}$ in the space $B_2$.

Keywords: Bergman space, extremal problems, polynomial approximation, $n$–widths.

UDC: 517.5

MSC: 41A17, 41A25

Received: 16.06.2023


 English version:
Ufa Mathematical Journal, 2024, 16:2, 66–75


© Steklov Math. Inst. of RAS, 2026