RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2020 Volume 12, Issue 4, Pages 42–55 (Mi ufa542)

This article is cited in 8 papers

On covering mappings in generalized metric spaces in studying implicit differential equations

E. S. Zhukovskiyab, W. Merchelaca

a Derzhavin Tambov State University, Internatsionalnya str. 33, 392000, Tambov, Russia
b Trapeznikov Institute of Control Sciences, Profsoyuznaya str. 65, 117997, Moscow, Russia
c Laboratoire des Mathématiques Appliquées et Modélisation, Université 8 Mai 1945 Guelma, B.P. 401, 24000, Guelma, Algeria

Abstract: Let on a set $X\neq \emptyset$ a metric $\rho :X\times X \to [0,\infty]$ be defined, while on $Y\neq\emptyset$ a distance $d :Y\times Y \to [0,\infty],$ be given, which satisfies only the identity axiom. We define the notion of covering and of Lipschitz property for the mappings $X\to Y$. We formulate conditions ensuring the existence of solutions $x\in X$ to equations of form $F(x,x)=y,$ $y \in Y,$ with a mapping $F:X\times X \to Y,$ being covering in one variable and Lipschitz in the other. These conditions are employed for studying the solvability of a functional equation with a deviation variable and of a Cauchy problem for an implicit differential equation. In order to do this, on the space $S$ of Lebesgue measurable functions $z:[0,1]\to \mathbb{R}$ we define the distance
\begin{equation*} d (z_1,z_2)=\mathrm{vrai}\sup_{t\in[0,1]}\theta(z_1(t),z_2(t)),\qquad z_1,z_2\in S, \end{equation*}
where each continuous function $\theta:\mathbb{R}\times \mathbb{R} \to [0,\infty) $ satisfies $\theta(z_1,z_2)=0$ if and only if $z_1=z_2.$

Keywords: covering mapping, metric space, functional equation with a deviating variable, ordinary differential equation, existence of solution.

UDC: 517.988.63, 517.922, 515.124.4

MSC: 34A09, 47J05, 54E40

Received: 23.03.2020


 English version:
Ufa Mathematical Journal, 2020, 12:4, 41–54

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026