RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2019 Volume 11, Issue 1, Pages 68–71 (Mi ufa461)

On Bary–Stechkin theorem

A. I. Rubinshtein

National Research Nuclear University MEPhI, Kashirskoe road, 31, 115409, Moscow, Russia

Abstract: In the beginning of the past century, N.N. Luzin proved almost everywhere convergence of an improper integral representing the function $\bar f$ conjugated to a $2\pi$-periodic summable with a square function $f(x)$. A few years later I.I. Privalov proved a similar fact for a summable function. V.I. Smirnov showed that if $\bar f$ is summable, then its Fourier series is conjugate to the Fourier series for $f(x)$. It is easy to see that if $f(x)\in\mathrm{Lip}\,\alpha$, $0<\alpha<1$, then $\bar f(x)\in\mathrm{Lip}\,\alpha$. The Hilbert transformation for $f(x)$ differs from $\bar f(x)$ by a bounded function and has a simpler kernel. It is easy to show that the Hilbert transformation of $f(x)\in\mathrm{Lip}\,\alpha$, $0<\alpha<1$, also belongs to $\mathrm{Lip}\,\alpha$. In 1956 N.K. Bari and S.B. Stechkin found the necessary and sufficient condition on the modulus of continuity $f(x)$ for the function $\bar f(x)$ to have the same modulus of continuity. In 2016, the author introduced the concept of conjugate function as Hilbert transformation for functions defined on a dyadic group. In the present paper we show an analogue of the Bari–Stechkin (and Privalov) theorem fails that for a conjugated in this sense function.

Keywords: dyadic group, conjugate function, modulus of continuity, Bari–Stechkin theorem.

UDC: 517.9

MSC: 42A50

Received: 18.08.2017


 English version:
Ufa Mathematical Journal, 2019, 11:1, 70–74

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026