RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2018 Volume 10, Issue 1, Pages 83–95 (Mi ufa420)

This article is cited in 2 papers

Behavior of singular integral with Hilbert kernel at weak continuity point of density

R. B. Salimov

Kazan State University of Architecture and Engineering, Zelenaya str. 1, 420043, Kazan, Russia

Abstract: We consider the singular integral with the Hilbert kernel
$$ I(\gamma_0)=\int\limits^{2\pi}_{0} \varphi(\gamma)\cot\frac{\gamma-\gamma_0}{2} \,d\gamma, $$
whose density $\varphi(\gamma)$ is a continuous in $[0, 2\pi]$ function, $\gamma_0~\in~[0, 2\pi]$, $\varphi(0)=\varphi(2\pi)$, and the integral is treated in the sense of its principal value. We assume that in the vicinity of a fixed point $\gamma = c$, $c\in(c^{-},c^{+})\subset[0, 2\pi]$, $c^{+}-c^{-}<1$, the density $\varphi(\gamma)$ satisfies the representation $ \varphi(\gamma)=\frac{\Phi(\gamma)}{\left(-\ln \sin^2 \frac{\gamma-c}{2}\right)^{\beta}},\, \gamma \in (c^{-},c^{+}), $ where $\Phi(\gamma)$ is a given continuous in $[c^{-},c]$, $[c,c^{+}]$ function with not necessarily coinciding one-sided limits $\Phi(c-0)$ and $\Phi(c+0)$, $\beta$ is a given number, and $\beta>1$. We suppose that the representations $\Phi(\gamma)-\Phi(c\pm0) = \frac{\chi(\gamma)}{\left( -\ln \sin^2 \frac{\gamma-c}{2}\right)^{\delta}}, $ $ \chi'(\gamma)=\frac{\nu(\gamma)}{\left(-\ln \sin^2 \frac{\gamma-c}{2}\right)\tan\frac{\gamma-c}{2}}, $ hold, where $\delta>0$ is a given number, $\chi(\gamma)$, $\nu(\gamma)$ are given functions continuous in each of the intervals $[c^{-},c]$, $[c,c^{+}]$, $\nu(c\pm0)=0$, $\Phi(c+0)$ is taken as $\gamma > c$, $\Phi(c-0)$ is taken as $\gamma < c$.
We prove that under the above conditions the representation
\begin{align*} I(\gamma_0)&-I(c)= \frac{\Phi(c-0)-\Phi(c+0)}{(\beta-1)\left(-\ln\sin^2\frac{\gamma_0-c}{2}\right)^{\beta-1}} \\ &- \frac{U(c+0)-U(c-0)}{\tilde{\beta}(\tilde{\beta}-1) \left(-\ln\sin^2\frac{\gamma_0-c}{2}\right)^{\tilde{\beta}-1}}+ o\left(\frac{1}{\left(-\ln\sin^2\frac{\gamma_0-c}{2}\right)^{\tilde{\beta}-1}}\right) +O\left(\frac{1}{\left(-\ln\sin^2\frac{\gamma_0-c}{2}\right)^{\beta}}\right), \end{align*}
holds as $\gamma_0\to c$. Here $\tilde{\beta}=\beta+\delta$, $\beta>1$, $\delta>0$, $U(c+0)-U(c-0)=\tilde{\beta}\big(\chi(c+0)-\chi(c-0)\big)$. We also consider the case $\beta=1$. A distinguishing feature of the paper is that while studying the behavior of the considered singular integral in the vicinity of the weak continuity point of its density, we need the Hölder condition no for the density neither for a component of the density. This feature allowed us to extend the range of possible applications of our results.

Keywords: singular integral, Hilbert kernel, Hölder condition, weak continuity.

UDC: 517.54

MSC: 30G12

Received: 08.02.2017


 English version:
Ufa Mathematical Journal, 2018, 10:1, 80–93

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026