RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2016 Volume 8, Issue 3, Pages 82–98 (Mi ufa326)

This article is cited in 1 paper

Asymptotics for the eigenvalues of a fourth order differential operator in a “degenerate” case

Kh. K. Ishkin, Kh. Kh. Murtazin

Bashkir State University, Ufa

Abstract: In the paper we consider operator $L$ in $L^2[0,+\infty)$ generated by the differential expression $\mathcal L(y)=y^{(4)}-2(p(x)y')'+q(x)y$ and boundary conditions $y(0)=y''(0)=0$ in the “degenerate” case, when the roots of associated characteristic equation has different growth rate at the infinity. Assuming a power growth for functions $p$ and $q$ under some additional conditions of smoothness and regularity kind, we obtain an asymptotic equation for the spectrum allowing us to write out several first terms in the asymptotic expansion for the eigenvalues of operator $L$.

Keywords: differential operators, asymptotics of spectrum, turning point.

UDC: 517.927.25

MSC: 47E05, 34L16, 34L20, 34L40, 34B40

Received: 15.06.2016


 English version:
Ufa Mathematical Journal, 2016, 8:3, 79–94

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026