RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2015 Volume 7, Issue 2, Pages 19–34 (Mi ufa276)

This article is cited in 6 papers

On absence conditions of unconditional bases of exponents

R. A. Bashmakov, A. A. Makhota, K. V. Trounov

Bashkir State University, Zaki Validi str., 32, 450076, Ufa, Russia

Abstract: In the classical space $L^2(-\pi,\pi)$ there exists the unconditional basis $\{e^{ikt}\}$ ($k$ is integer). In the work we study the existence of unconditional bases in weighted Hilbert spaces $L^2(I,\exp h)$ of the functions square integrable on an interval $I$ in the real axis with the weight $\exp(- h)$, where $h$ is a convex function. We obtain conditions showing that unconditional bases of exponents can exist only in very rare cases.

Keywords: Riesz bases, unconditional bases, series of exponents, Hilbert space, Fourier–Laplace transform.

UDC: 517.5

MSC: 30D20

Received: 01.04.2015


 English version:
Ufa Mathematical Journal, 2015, 7:2, 17–32

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026