RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2014 Volume 6, Issue 4, Pages 63–70 (Mi ufa260)

Generalized solutions and Euler–Darboux transformations

I. V. Verevkin

Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia

Abstract: We introduce Euler–Darboux transformation for non-homogeneous differential equations with the right-hand side being a generalized function. As an example, we construct the fundamental solutions for Klein–Gordon–Fock and Schrödinger equations with variable coefficients describing a particle in external scalar field.

Keywords: Euler–Darboux transformation, Klein–Gordon–Fock equation, Schrödinger equation, fundamental solution.

UDC: 517.95

MSC: 35A08, 35D99, 35Q40

Received: 06.03.2014


 English version:
Ufa Mathematical Journal, 2014, 6:4, 60–67

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026