RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal // Archive

Ufimsk. Mat. Zh., 2012 Volume 4, Issue 1, Pages 63–70 (Mi ufa133)

This article is cited in 2 papers

On the distribution of indicators of unconditional exponential bases in spaces with a power weight

K. P. Isaev, K. V. Trunov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia

Abstract: In the present paper we consider the existence of unconditional exponential bases in a space of locally integrable functions on a bounded interval of the real number line $I$ satisfying
$$ \|f\|:=\sqrt{\int_I|f(t)|^2e^{-2h(t)}\,dt}<\infty, $$
where $h(t)$ is a convex function on this interval. The lower estimate was obtained for the frequency of indicators of unconditional bases of exponentials when $I=(-1;1)$, $h(t)=-\alpha\ln(1-|t|)$, $\alpha>0$.

Keywords: series of exponents, unconditional bases, Riesz bases, power weights, Hilbert space.

UDC: 517.5

Received: 20.12.2011



© Steklov Math. Inst. of RAS, 2026