Abstract:
Twelve homologous series of general formula $\text{H}(\text{CH}_2)_S\text{R}$, كلم $\text{R}$ are treated, where $\text{R}$ denotes radicals such as$-\text{H}$, $-\text{OH}$, $-\text{C}_2\text{H}_3$, $-\text{COOH}$, $-\text{C}_6\text{H}_5$ , $-\text{COCH}_3$ , $-\text{COC}_2\text{H}_5$, $-\text{COC}_3\text{H}_7$, $-\text{COC}_4\text{H}_9$, $-\text{COC}_5\text{H}_{11}$, $-\text{COC}_6\text{H}_{13}$, $-\text{COC}_7\text{H}_{15}$. It is assumed that the limiting $(S \to \infty)$ constants of a material are independent of the chemical nature of the radical. Equations are suggested for the calculation of the critical constants of homologous series. The equation coefficients are determined using the method of step regression by way of simultaneous treatment of the experimental data for the series being treated.