Abstract:
A modified equation of state and a thermodynamically equilibrium model are used to numerically simulate the thermodynamic parameters of shock-wave loading of germanium in its pure form, as well as alloys with germanium as a component. The parameters of the equations of state for two phases of germanium are determined. The thermodynamic parameters are modeled for these $\rm Ge~I$ and $\rm Ge~II$ phases in the pressure range from $1$ to $400$ GPa. The shock adiabats for both phases are plotted, and the heat capacity values along the normal isobars and isochores and the entropy values for germanium as a function of temperature were calculated. The simulation results are compared with the results of other authors (both calculations and experiments).