RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1980 Volume 25, Issue 1, Pages 30–43 (Mi tvp952)

This article is cited in 10 papers

On sequential estimation under the conditions of the local asymptotic normality

S. Yu. Efroĭmovič

Moscow

Abstract: Let $\mathscr E_n=\{\mathbf P_{n,\theta};\theta\in\Theta\}$ be a sequence of families of probability measures and $l(x)$ be a loss function such that $l(x)=l(-x)$, $l(x)\ge l(z)$ if $|x|\ge|z|$,
$$ \psi(\mu)=\int l(x/\mu)e^{-x^2/2}\,dx<\infty\qquad\text{and}\qquad\psi(\mu)\to 0,\quad \mu\to\infty. $$

Theorem 1. {\it Let $\mathscr E_n$ be locally asymptotically normal at the point $t\in\Theta$ and $(\{T_m^{(n)}\},\tau_n)$ be a sequence of sequential estimation procedures. Then for arbitrary positive constants $\gamma$, $\varepsilon$, $\delta$ there exist $b_0(\gamma,\varepsilon,\delta)$ and $n_0(\gamma,\varepsilon,\delta,b)$ such that for $b\ge b_0(\gamma,\varepsilon,\delta)$ and $n\ge n_0(\gamma,\varepsilon,\delta,b)$ inequality (2) is valid.}
As a consequence of this theorem we show that if $\tilde l(1/\mu)$ is convex function of $\mu$ and (3) holds, then the inequality (4) is valid. Asymptotical normality and local asymptotical minimax properties of maximum likelihood, Bayes and generalized Bayes estimates are established.

Received: 14.07.1977


 English version:
Theory of Probability and its Applications, 1980, 25:1, 27–40

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026