This article is cited in
10 papers
On the probabilities of large deviations for the maximum of sums of independent random variables
A. K. Aleškevičiene Vilnius
Abstract:
Let
$\xi_1,\xi_2,\dots$ be a sequence of independent identically distributed random variables with, non-degenerate distribution function
$F(x)$,
$$
a=\mathbf E\xi_1,\quad\sigma^2=\mathbf D\xi_1,\quad S_{n}=\sum_{l=1}^n\xi_l,\quad
\overline S_n=\max_{1\le k\le n}S_k,\quad\overline F(x)=\mathbf P\{\bar S_n<x\}
$$
.
We prove that if
$a=0$ and
$$
\int_{-\infty}^{\infty} e^{hy}\,dF(y)< \infty,\qquad |h|\le A,\ A>0,
$$
then for
$n\to\infty$,
$1<x=o(\sqrt{n})$
$$
\frac{1-\overline F_n(x\overline{\sigma}\sqrt{n})}{1-G(x)}=
\exp\biggl\{\frac{x^{3}}{\sqrt{n}}\lambda\biggl(\frac{x}{\sqrt{n}}\biggr)\biggr\}
\biggl[1+O\biggl(\frac{x}{\sqrt{n}}+e^{-x^2/8}\biggr)\biggr],
$$
where $\displaystyle G(x)=(2/\pi)^{1/2}\int_{0}^x e^{-u^2/2}\,du$ (
$x\ge 0$),
$G(x)=0$ (
$x<0$) and
$\lambda(u)$ is a Cramer's power series. Analogous statement is proved for the case
$a>0$. We obtain also the theorems on the probabilities of large deviations for
$\overline S_n$ in the Linnik's zones.
Received: 26.01.1976