Short Communications
О некоторых свойствах сопровождающих законов для симметричных функций распределений
Yu. P. Studnev Uzhgorod
Abstract:
Let
$\{\xi_k\}$ be a sequence of independent random variables with the same symmetric distribution function
$F(x)$ which has a non-negative characteristic function and
$F_n(x)$ be the distribution function of the sum
$s_n=\xi_1+\dots+\xi_n$. Denote by
$\mathfrak G$ the set of infinitely divisible laws.
In the paper we show by elementary methods that there exist such metrics
$$
\rho_i(F_n,G)\quad(G\in\mathfrak G),\quad i=1,2,\dots,
$$
invariant with respect, to linear transformations of the arguments, that the inequality
$$
\inf_{G\in\mathfrak G}\rho_i(F_n,G)\le Cn^{-1}
$$
where
$C$ is an absolute constant, holds.
Received: 14.06.1966