RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1968 Volume 13, Issue 3, Pages 490–493 (Mi tvp869)

This article is cited in 2 papers

Short Communications

On the starting points of wanderings of Markov processes

E. B. Dynkin, A. A. Yushkevich

Moscow

Abstract: Let $x_t$ be a Markov process on $E$ and $D$ be a subset of $E$. We will call a wandering any connected component of the set $\{t\colon x_t\in D\}$. Denote by $\overline x_t$ the process obtained from $x_t$ by killing at the first exit time out of $D$. It is proved that, under some conditions, with probability 1, every wandering starts at a point of the Martin boundary corresponding to $\overline x_t$ (i.e. the limit in (3) exists).

Received: 25.12.1967


 English version:
Theory of Probability and its Applications, 1968, 13:3, 468–470

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026