RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1968 Volume 13, Issue 2, Pages 333–337 (Mi tvp850)

This article is cited in 84 papers

Short Communications

On the number of boundary out-crossings of a region by a vector stochastic process

Yu. K. Belyaev

Moscow

Abstract: It is shown that under some restrictions (see the conditions $C_\Phi$, $C_\xi$, $C_{\xi\xi}$) the moments of the number of crossing of a set $\Gamma$ with a smooth boundary $S_\Phi=\{\mathbf x\colon\Phi(\mathbf x)=0\}$. $\mathbf x\in R^m$, by a continually differentiable vector stochastic process $\xi_i$ can be found explicitly. For example, the intensity $\mu^+(\Gamma,t)$ of the number of out-crossings of $\Gamma$ from the region $\Phi(x)<0$ at time $t$ is expressed by a surface integral of the first kind:
$$ \mu^+(\Gamma,t)=\int_{x\in\Gamma}\mathbf M\{(\mathbf n_\Phi(\mathbf x)'\xi_t)^+\mid\xi_t'=\mathbf x\}p_t(\mathbf x)\,ds(\mathbf x). $$
At the end of the paper examples are given, which illustrate advantages of the obtained formulas.

Received: 24.08.1967


 English version:
Theory of Probability and its Applications, 1968, 13:2, 320–324

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026