Abstract:
Let $\xi(t)$, $t\in[0,T]$, be a stationary Gaussian process with zero mean. We investigate the conditions for the functionals
$$
S_n=\sum_{k=1}^nf_n\biggl(\xi\biggl(\frac knT\biggr)\biggr)\frac Tn
$$
to converge to the additive functionals
$$
J=\int_0^Tg(\xi(t))\,dt.
$$