RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1967 Volume 12, Issue 2, Pages 353–358 (Mi tvp713)

This article is cited in 11 papers

Short Communications

On Martin Boundaries for the Direct Product of Markov Chains

S. A. Molchanov

Moscow

Abstract: Let $X^i$ be denumerable Markov chains in state spaces $E^i$ with transition matrices $P^i$ $(i=1,2)$. A function $f(x^1,x^2)$ ($x^1\in E^1$, $x^2\in E^2$) is harmonic for chain $X^1\times X^2$ if
$$ (P^1\times P^2)f=f. $$
It is proved that every minimal harmonic function for chain $X^1\times X^2$ may be represented in the form
$$ f(x^1,x^2)=\varphi(x^1)\psi(x^2) $$
where functions $\varphi(x^1)$ and $\psi(x^2)$ are such that
$$ \begin{matrix} P^1\varphi&=&\alpha\varphi&& \\ &&\alpha\beta&=&1 \\ P^2\psi&=&\beta\psi&& \end{matrix} $$
In this way the Martin boundary for chain $X^1\times X^2$ is described in terms of the Martin boundaries for chains $X^1$ and $X^2$.

Received: 01.03.1966


 English version:
Theory of Probability and its Applications, 1967, 12:2, 307–310

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026