RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1967 Volume 12, Issue 2, Pages 307–321 (Mi tvp707)

This article is cited in 13 papers

Necessary and Sufficient Statistics for the Family of Shifts of Probability Distributions on Continious Bicompact Groups

V. M. Maksimov

Moscow

Abstract: It is shown that if the family of probability distributions $p_y(x)=p(xy)$ on a bicompact group $G$, where $x\in G$ and $y\in G$, has nontrivial sufficient statistics for the parameter $ó$ then the density $p(x)$ may be written in the form $p(x)=\exp\Bigl(\lambda+\sum_{k=1}^sc_k\varphi_k(x)\Bigr)$ where $1,\varphi_1(x),\dots,\varphi_s(x)$ is a basis of the set of entries of the matrix $\{g_{ij}(x)\}$ of a certain real finite-dimensional representation of group $G$.
The case when $p(x)$ may be equal to zero is also considered (here we deal mainly with the case when $G$ is the circle group).

Received: 14.01.1966


 English version:
Theory of Probability and its Applications, 1967, 12:2, 267–280

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026