RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1967 Volume 12, Issue 1, Pages 141–143 (Mi tvp694)

This article is cited in 23 papers

Short Communications

Remarks on Uncorrelated Gaussian Dependent Random Variables

O. V. Sarmanov

Moscow

Abstract: Formula (3) of the present paper gives a general example of two uncorrelated Gaussian dependent random variables with non-Gaussian joint distribution. In this formula $\varphi(x)$ is a bounded even real valued function defined on the real line such that $\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty\varphi(x)e^{-x^2/2}\,dx=0$, $h$ is equal to $\sup_{-\infty<x<\infty}|\varphi(x)|$ and $-1\le\lambda\le1$.

Received: 28.08.1965


 English version:
Theory of Probability and its Applications, 1967, 12:1, 124–126

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026