RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1966 Volume 11, Issue 4, Pages 612–631 (Mi tvp662)

This article is cited in 73 papers

On Stefan's problem and optimal stopping rules for Markov processes

B. I. Grigelionis, A. N. Shiryaev

Moscow

Abstract: Let $X=\{x_i,\zeta,\mathscr M_i,\mathbf P_x\}$ be a homogeneous Markov process with the phase space $E\subseteq R^n$. Let us denote $\tilde s(x)=\sup\limits_{\tau\in\mathfrak M}\mathbf M_xg(x_\tau)$ where $\mathfrak M$ is the class of Markov stopping moments. The purpose of this article is to find those conditions under which the finding of the optimal stopping moment $\widetilde\tau$ and the “cost” $\widetilde s(x)$ is equivalent to the solution of generalized Stefan's problem (5).

Received: 25.04.1966


 English version:
Theory of Probability and its Applications, 1966, 11:4, 541–558

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026