RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1966 Volume 11, Issue 3, Pages 444–462 (Mi tvp640)

This article is cited in 493 papers

Предельная теорема для решений дифференциальных уравнений со случайной правой частью

R. Z. Khas'minskii

Moscow

Abstract: The asymptotic behaviour of the solution $X_\varepsilon(t,\omega)$ of equation (0.1) as $\varepsilon\to0$ is considered. The main assumptions are the following ones: 1) condition (1.1) is fulfilled and the processes $F^{(i)}(x,t,\omega)$ satisfy Ibragirnov's mixing condition (1.5) with $T^6\beta(T)\downarrow0$ as $T\to\infty$, 2) limits (1.4) exist and $\overline\Phi^0(x)\equiv0$. The weak convergence of the process $X_\varepsilon(\tau,\omega)$ $(\tau=\varepsilon^2t)$ to a Markov process $X_0(\tau,\omega)$ is proved. Moreover the local characteristics of the process $X_0(\tau,\omega)$ are calculated. An application of this theorem to the problem of parametric excitation of linear systems by random forces is considered

Received: 14.09.1965


 English version:
Theory of Probability and its Applications, 1966, 11:3, 390–406

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026