RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1965 Volume 10, Issue 4, Pages 672–692 (Mi tvp580)

This article is cited in 9 papers

On a class of limit distributions for normed sums of independent random variables

A. A. Zinger

Leningrad

Abstract: Let $\zeta_n=\frac{\xi_1+\xi_2+\dots+\xi_n}{B_n}-A_n$ ($n=1,2,\dots$) be a sequence of normed sums $n$ of independent random variables which has a nondegenerate limit distribution $G(x)$ for appropriately selected constants $A_n$, $B_n$.
This paper is devoted to the characterization of the class $\{G(x)\}$ named here $\mathscr P_r$ arizing when among the distributions of the random variables $\xi^i$ there are only $r$ different ones. Three theorems describing the class $\mathscr P_r$ are proved

Received: 18.05.1965


 English version:
Theory of Probability and its Applications, 1965, 10:4, 607–626

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026