RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2025 Volume 70, Issue 3, Pages 522–530 (Mi tvp5744)

Short Communications

On weak convergence of the moments of the sum of independent and identically distributed random variables

L. V. Rozovskii

Saint-Petersburg State Chemical-Pharmaceutical University

Abstract: We study the behavior of the “moments” $\chi_n(\varepsilon) = \mathbf{E} g(|S_n|)\,\frac{\mathbf{I}[|S_n|\ge\varepsilon a_n]}{g(a_n)}$, $\varepsilon>0$, where $S_n$ is the sum of $n$ independent copies of some random variable, the sequence $\{ a_n, \, n\ge 1\}$ is monotone increasing to infinity, and the positive function $g(y)$ satisfies $g(y)\nearrow$, $g(u)/u^\gamma\searrow\,$, $y>y_0$ (with some $\gamma>0)$. In particular, the following result is proved: $\chi_n(\varepsilon) = o(1)$ (for each $\varepsilon>0$) if and only if $n\,\mathbf{E} X\,\frac{\mathbf I[|X|<a_n]}{a_n}\to 0$, $n\,\mathbf{E} X^2\,\frac{\mathbf I[|X|<a_n]}{a^2_n} \to 0$, and $n\, \mathbf{E} g(|X|)\,\frac{\mathbf I[|X|\ge a_n]}{g(a_n)} = o(1)$.

Keywords: weak convergence, weak convergence of moments.

Received: 03.08.2024

DOI: 10.4213/tvp5744


 English version:
Theory of Probability and its Applications, 2025, 70:3, 425–431

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026