RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2025 Volume 70, Issue 3, Pages 531–540 (Mi tvp5722)

Short Communications

Mallows distance convergence for heavy-tailed Markov chains: regeneration approach

M. L. Calvache-Hoyosa, C. C. Y. Doreab, E. S. Silvac, W. M. Soaresd

a Universidade Federal de Sergipe, Brazil
b Universidade de Brasilia, Brazil
c Secretaria de Estado da Educação da Bahia, Brazil
d Instituto Federal de Brasilia, Brazil

Abstract: For heavy-tailed Markov chains we derive conditions for the convergence in Mallows distance. We make use of a concept of Mallows distance (also known as the Wasserstein distance) between regenerative sequences. The novelty of our approach is in the use of regenerative processes, which is a probability technique capable of splitting a Markov chain into independent and identically distributed cycles for analysis of asymptotic behavior, including aperiodic and recurrent regenerative processes.

Keywords: Mallows distance, stable laws, Markov chains, regeneration.

Received: 14.05.2024
Accepted: 06.02.2025

DOI: 10.4213/tvp5722


 English version:
Theory of Probability and its Applications, 2025, 70:3, 432–439

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026