RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2025 Volume 70, Issue 2, Pages 247–290 (Mi tvp5703)

Asymptotic behavior of a multilevel type error for SDEs driven by a pure jump Lévy process

M. Ben Alayaa, A. Kebaierb, T. T.-B. Ngôc

a Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, Saint-Etienne-du-Rouvray, France
b Laboratoire de Mathématiques et Modélisation d'Evry, CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
c Laboratoire Manceau de Mathématiques, Le Mans Université, Le Mans, France

Abstract: Motivated by the multilevel Monte Carlo method introduced by Giles [Oper. Res., 56 (2008), pp. 607–617], we study the asymptotic behavior of the normalized error process $u_{n,m}(X^n-X^{nm})$} where $X^n$ and $X^{nm}$ are, respectively, Euler approximations with time steps $1/n$ and $1/nm$ of a given stochastic differential equation driven by a pure jump Lévy process. In this paper, we prove that this normalized multilevel error converges to different nontrivial limiting processes with various sharp rates $u_{n,m}$ depending on the behavior of the Lévy measure around zero. Our results are consistent with those of Jacod [Ann. Probab., 32 (2004), pp. 1830–1872] obtained for the normalized error $u_n(X^n-X)$, as when letting $m$ tends to infinity, we recover the same limiting processes. For the multilevel error, the proofs of the current paper are challenging since, unlike Jacod's paper, we need to deal with $m$ dependent triangular arrays instead of one.

Keywords: Euler discretization, stochastic differential equations, pure jump Lévy processes, limit theorems, multilevel type error.

MSC: Primary 60J75, 65C30; secondary 60J30, 60F17.

Received: 25.01.2024
Accepted: 07.11.2024

DOI: 10.4213/tvp5703


 English version:
Theory of Probability and its Applications, 2025, 70:2, 200–236

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026