RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2024 Volume 69, Issue 4, Pages 639–652 (Mi tvp5689)

On short Edgworth expansions for weighted sums of random vectors

S. A. Ayvazyan

Lomonosov Moscow State University

Abstract: We consider “typical” asymptotic behavior of weighted sums of independent identically distributed random vectors in the $k$-dimensional space. We show that if the fifth absolute moment of a separate term is finite, then in the multidimensional central limit theorem, the convergence rate is $O(1/n^{3/2})$ under the Chebyshev–Edgeworth correction. This result generalizes a result of Bobkov [Edgeworth corrections in randomized central limit theorems, in Geometric Aspects of Functional Analysis, Springer, 2020, pp. 71–97] to the multidimensional case.

Keywords: Chebyshev–Edgeworth expansion, multidimensional central limit theorem, multidimensional Gaussian distribution.

Received: 09.12.2023
Revised: 03.03.2024
Accepted: 21.08.2024

DOI: 10.4213/tvp5689


 English version:
Theory of Probability and its Applications, 2025, 69:4, 508–519

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026