RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1965 Volume 10, Issue 3, Pages 510–518 (Mi tvp546)

This article is cited in 6 papers

Short Communications

Об абсолютной непрерывности безгранично делимых распределений при сдвигах

A. V. Skorokhod

Kiev

Abstract: Random variables $\xi$ with values in a separable Hilbert space $H$ with infinitely divisible distributions are considered. Some sufficient conditions for the absolute continuity of the measure corresponding to $\xi+a$ ($a\in H$) with respect to the measure corresponding to $\xi$ are obtained.
Let now $H$ denote the real line and let the characteristic function of $\xi$ be
$$ \exp\biggl\{\int\biggl(e^{ixt}-1-\frac{ixt}{1+x^2}\biggr)\Pi(dx)\biggr\}. $$
It is proved that in this case $\xi$ has a density when the condition $\int_{-1}^1|x|\Pi(dx)=\infty$ is satisfied.

Received: 14.01.1965


 English version:
Theory of Probability and its Applications, 1965, 10:3, 465–472

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026