RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1965 Volume 10, Issue 2, Pages 386–389 (Mi tvp536)

This article is cited in 12 papers

Short Communications

On the maximum of a Gaussian stationary process

M. G. Šur

Moscow

Abstract: We consider a Gaussian real process $x(t)$ which satisfies the same conditions as in [1]. We prove the existence (a.s.) of such random number $t_0$ ($t_0<\infty$) that the inequality
$$ |\max_{o\le u\le t}x(u)-\sigma\sqrt{2\ln t}|<\frac{(\sigma+\varepsilon)\ln\ln t}{\sqrt{2\ln t}} $$
is valid for all $t>t_0$ where $\varepsilon$ is any fixed positive number and $\sigma^2=\mathbf Mx^2(t)$.

Received: 07.10.1964


 English version:
Theory of Probability and its Applications, 1965, 10:2, 354–357

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026