RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2018 Volume 63, Issue 4, Pages 779–794 (Mi tvp5149)

This article is cited in 3 papers

Limit theorems for random exponentials: the bounded support case

M. Grabchaka, S. A. Molchanovab

a Department of Mathematics and Statistics, University of North Carolina Charlotte, Charlotte, NC, USA
b National Research University Higher School of Economics, Moscow

Abstract: In this paper we study the asymptotic distributions, under appropriate normalization, of the sum $S_t = \sum_{i=1}^{N_t} e^{t X_i}$, the maximum $M_t = \max_{i\in\{1,2,\dots,N_t\}} e^{tX_i}$, and the $l_t$ norm $R_t=S_t^{1/t}$, when $N_t\to\infty$ as $t\to\infty$ and $X_1,X_2,\dots$ are independent and identically distributed random variables in the maximum domain of attraction of the reverse-Weibull distribution.

Keywords: random exponentials, exponential sums, random energy model.

Received: 11.07.2017
Accepted: 05.04.2018

DOI: 10.4213/tvp5149


 English version:
Theory of Probability and its Applications, 2019, 63:4, 634–647

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026