RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2000 Volume 45, Issue 4, Pages 773–776 (Mi tvp508)

This article is cited in 3 papers

Short Communications

On characteristic functions of probability distributions of sums with random permutations of signs

A. A. Ryabinin

N. I. Lobachevski State University of Nizhni Novgorod, Faculty of Mechanics and Mathematics

Abstract: In the paper, the random series
$$ S=\sum_{k=1}^\infty \pm a_k ,\qquad a_k > 0,\qquad \sum_{k=1}^\infty a_k < \infty $$
$S=\sum_{k=1}^\infty \pm a_k$, $a_k > 0$, $\sum_{k=1}^\infty a_k < \infty$ is considered, in which the permutation of signs is subject to the Markov dependence with the matrix of transition probabilities
$$ \begin{pmatrix} p(+1,+1)&p(-1,+1) p(+1,-1)&p(-1,-1) \end{pmatrix}= \begin{pmatrix} 1-\alpha&\alpha \alpha&1-\alpha \end{pmatrix}, \qquad 1<\alpha<1. $$
For the characteristic function $f(z)$ of the sum $S$, the formula
$$ f(z)=\prod^{\infty}_{k=0}\cos(a_kz)+i(1-2\alpha)\sum_{j=0}^{\infty}\psi_j(z)\prod^{\infty}_{k=j+2}\cos(a_kz)\sin(a_{j+1}z), $$
is obtained, where $\psi_j(z)=\mathsf{E}(t_je^{izS_j})$ è $S_j=\sum^j_{k=1}\pm a_k$, $z \in {\mathbf C}^1$.

Keywords: random series, Markov dependence, characteristic function.

Received: 12.04.1999

DOI: 10.4213/tvp508


 English version:
Theory of Probability and its Applications, 2001, 45:4, 687–690

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026