RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1958 Volume 3, Issue 4, Pages 470–474 (Mi tvp4952)

This article is cited in 33 papers

Short Communications

On Uniform Approximation of the Binomial Distribution by Infinitely Divisible Laws

I. P. Tsaregradskii

Moscow

Abstract: Let $F_p^n(x)$ be an $(n,p)$ –- binomial distribution function and be the set of all infinitely divisible laws. We define
$$\rho\bigl(F_p^n,\mathfrak G\bigr)=\inf_{G\in\mathfrak G}\sup_x\left|F_p^n (x)-G(x)\right|.$$

Then,
$$\sup_{0\leq p\leq1}\rho\left(F_p^n,\mathfrak G\right)<\frac{C_0}{\sqrt n},$$
where $C_0$ is an absolute constant.

Received: 06.07.1958


 English version:
Theory of Probability and its Applications, 1958, 3:4, 434–438


© Steklov Math. Inst. of RAS, 2026