RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1958 Volume 3, Issue 1, Pages 41–60 (Mi tvp4913)

This article is cited in 3 papers

Discontinuous Markov Processes

E. B. Dynkin

Moscow

Abstract: A Markov process $x(t,w),t\geq0,\omega\in\Omega$, on a measurable space $(\mathscr E,\mathfrak B)$ is called a discontinuous process, if for every $\omega\in\Omega$ and $t\geq0$ there exists an $\varepsilon>0$ such that $x(t,\omega)=x(t+h,\omega)$ for all $h\in(0,\varepsilon]$. In this paper infinitesimal operators of all discontinuous processes are calculated. The results of these calculations imply the step-function processes described.

Received: 02.10.1957


 English version:
Theory of Probability and its Applications, 1958, 3:1, 38–57


© Steklov Math. Inst. of RAS, 2026