RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1960 Volume 5, Issue 2, Pages 243–246 (Mi tvp4832)

This article is cited in 11 papers

Short Communications

A Central Limit Theorem for Additive Random Functions

Yu. A. Rozanov

Moscow

Abstract: In this paper the additive random functions ${\text{H}}(\Delta )$ of the semi-interval $\Delta=[s,t)$, satisfying the strong mixing condition (1), are considered.
Let in formula (1) the variable $\alpha(\tau)= O[\tau^{-1-\varepsilon}]$ and $\mathbf M|\mathrm H(\Delta_0)-\mathbf M\mathrm H(\Delta_0)|^{2+\delta}\leq M_0,\delta>2/\varepsilon$ for all $\Delta_0=[t_0,t+t_0)$, then, assuming condition (4),
$$\mathbf P\biggl\{\frac{\mathrm H(\Delta)-\mathbf M\mathrm H(\Delta)}{\sqrt{\mathbf D\mathrm H(\Delta)}}< x\biggr\}\to\frac1{\sqrt {2\pi}}\int_{-\infty}^x{e^{-u^2/2}}\,du$$
when $|\Delta|=t-s\to \infty$.

Received: 18.11.1959


 English version:
Theory of Probability and its Applications, 1960, 5:2, 221–223


© Steklov Math. Inst. of RAS, 2026