Abstract:
In this paper a nomogram is constructed for the function $$P(\chi^2,n)=\frac1{2^{(n-2)/2}\Gamma(n/2)}\int_\chi ^\infty z^{n-1}e^{-z^2/2}\,dz$$ of the variables, $P,\chi^2,n$ lying within the following limits: $$1\leq n\leq110,\quad1\leq\chi^2\leq150,\quad0,001\leq P\leq0,999.$$ The relative error in the middle part of the answer scale of $P$ does not exceed $3\%$ for $0,1\leq P\leq0,9$ and $10\%$ at the ends of this scale.