This article is cited in
35 papers
Short Communications
The Law of Large Numbers for $D[0,1]$-Valued Random Variables
R. Ranga Rao Calcutta
Abstract:
Let
$\xi_1 (t,w),\xi_2(t,w),\ldots$ be a strictly stationary sequence of random variables taking values in the space
$D[0,1]$ of real functions on
$[0,1]$ without discontinuities of the second kind, and let $S_n(t,w)=\frac{1}{n}\left[{\xi _1(t,w)+\ldots+\xi_n(t,w)}\right]$. It is proved that, for a random function
$m(t,w)$ whose form is given explicitly, $\mathop{\lim }\limits_{n\to\infty}\left\|S_n (t,w)-m(t,w)\right\|=0$ with probability 1 (Theorem 1), where
$\|\cdot\|$ denotes the uniform norm on
$D[0,1]$. Moreover, if ${\mathbf E}{\|\xi_1 (t,w)\|}^{1+\alpha}<\infty$ for some
$\alpha\geqq\infty$, then
$$
\mathop{\lim}\limits_{n\to\infty}{\mathbf E}{\left\|S_n(t,w)-m(t,w)\right\|}^{t+\alpha}=0
$$
.(Theorem 2).
Received: 23.03.1961
Language: English