RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2000 Volume 45, Issue 2, Pages 251–267 (Mi tvp462)

This article is cited in 11 papers

Convergence of some integrals associated with Bessel processes

A. S. Cherny

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study the convergence of the Lebesgue integrals for the processes $f(\rho_t)$. Here, $(\rho_t,\,t\ge0)$ is the $\delta$-dimensional Bessel process started at $\rho_0\ge0$ and $f$ is a positive Borel function. The obtained results are applied to prove that two Bessel processes of different dimensions have singular distributions.

Keywords: Bessel processes, Engelbert–Schmidt zero–one law, Brownian local time, regular continuous strong Markov processes, singularity of distributions.

Received: 21.11.1998

DOI: 10.4213/tvp462


 English version:
Theory of Probability and its Applications, 2001, 45:2, 195–209

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026