RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2012 Volume 57, Issue 4, Pages 768–777 (Mi tvp4479)

This article is cited in 11 papers

Short Communications

Estimates of the concentration functions of weighted sums of independent random variables

Yu. S. Eliseevaa, A. Yu. Zaitsevb

a Saint-Petersburg State University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $X_1,\dots,X_n$ be independent and identially distributed random variables. The paper deals with obtaining upper bounds on the concentration function of the weighted sums $\sum_{k=1}^na_kX_k$ based on the coefficients $a_k$, $1\leqslant k\leqslant n$. Results obtained in this paper improve over the recent works in [O. Friedland and S. Sodin, C. R., Math., Acad. Sci. Paris 345, No. 9, 513–518 (2007; Zbl 1138.60023)] and [M. Rudelson and R. Vershynin, Adv. Math. 218, No. 2, 600–633 (2008; Zbl 1139.15015), Commun. Pure Appl. Math. 62, No. 12, 1707–1739 (2009; Zbl 1183.15031)].

Keywords: concentration functions; inequalities; sums of independent random variables; Littlewood–Offord problem.

MSC: 60E15

Received: 26.02.2012

DOI: 10.4213/tvp4479


 English version:
Theory of Probability and its Applications, 2013, 57:4, 670–678

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026