Abstract:
Let $\xi_1,\xi_2,\dots$ be independent identically distributed random variables, $\mathbf{M}\xi_1\ge 0$, and let $\chi$ is the limiting value of the first jump over an infinite bound. In the paper, the estimates
$$
\mathbf{M}\chi^s\le A_1\frac{1}{s+1}\frac{\mathbf{M}|\xi_1|^{s+2}}{\mathbf{M}\xi^2_1},\qquad s\ge 0,
$$
are obtained.