RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1993 Volume 38, Issue 4, Pages 689–741 (Mi tvp4010)

This article is cited in 16 papers

Dynamical fluctuations at the critical point: convergence to a nonlinear stochastic PDE

L. Bertinia, E. Presuttia, B. Rüdigera, E. Saadab

a Dipartimento di Matematica, Università di Roma Tor Vergata, Roma, Italy
b Université de Rouen, France

Abstract: We consider an Ising spin system with Glauber dynamics and Kac interactions in one dimension at the critical temperature. We study the fluctuation filed of the magnetization density in a scaling limit which involves space, time and the range of the interaction. We prove that for a suitable choice of the scalings the normalized fluctuations field converges to the solution of a one-dimensional (nonlinear) Ginzburg–Landau equation perturbed by a white noise process.

Keywords: Kac potentials, critical fluctuations, stochastic quantization of field theories.

Received: 22.07.1993

Language: English


 English version:
Theory of Probability and its Applications, 1993, 38:4, 586–629

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026