RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1993 Volume 38, Issue 3, Pages 491–502 (Mi tvp3961)

Semimartingales of processes with independent increments and enlargement of filtration

L. I. Gal'chuk

Département de Mathématiques, Université de Strasbourg, Strasbourg, France

Abstract: Let $X$ be a process with independent increments, $\mathcal{F} = (\mathcal{F}_t )$, $0 \le t \le T, \mathcal{F} = \sigma (X_s ,s \le t)$ a natural filtration. Denote
$$ G_t = \sigma \{ {X_s ,s \le t; X^c ( T ); p\{ ] {0;T} ]; A \in \mathcal{B} \}} \},\qquad t \le T, $$
where ${X^c }$ is a continuous martingale component, ${p\{ { ] {0;T} ]; A \in \mathcal{B}}\}}$ is the integer-valued Poisson measure generated by ${X,\mathcal{B}}$ is the Borel $\sigma $-algebra. The paper discusses conditions under which any process $Y$ being a semimartingale with respect to filtration $F$ is also a semimartingale with respect to filtration $G$.

Keywords: processes with independent increments, semimartingales, extension of a filtration flow.

Received: 21.05.1990


 English version:
Theory of Probability and its Applications, 1993, 38:3, 395–404

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026