RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2001 Volume 46, Issue 3, Pages 483–497 (Mi tvp3897)

This article is cited in 58 papers

On the Uniqueness in Law and the Pathwise Uniqueness for Stochastic Differential Equations

A. S. Cherny

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We prove that the uniqueness in law for an SDE
\begin{equation} dX_t^i=b_t^i(X)\,dt+\sum_{j=1}^m\sigma_t^{ij}(X)\,dB_t^j, \qquad X_0^i=x^i,\quad i=1,\dots,n,\quad \tag{1} \end{equation}
implies the uniqueness of the joint distribution of a pair $(X,B)$. Moreover, we prove that the uniqueness in law for (1), together with the strong existence, guarantees the pathwise uniqueness. This result is somehow “dual” to the theorem of Yamada and Watanabe.

Keywords: stochastic differential equations, weak solutions, strong solutions, uniqueness in law, pathwise uniqueness, theorem of Yamada and Watanabe.

Received: 18.05.2001

DOI: 10.4213/tvp3897


 English version:
Theory of Probability and its Applications, 2002, 46:3, 406–419

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026