RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1994 Volume 39, Issue 4, Pages 812–820 (Mi tvp3856)

This article is cited in 3 papers

Short Communications

Canonical spectral equation

V. L. Girko

National Taras Shevchenko University of Kyiv, The Faculty of Cybernetics

Abstract: We consider a sequence of symmetric real-valued random matrices $\Xi _n = (\xi _{ij}^{(n)} )_{i,j = 1}^n ,n = 1,2, \ldots $, whose entries $\xi _{ij}^{(n)}$ ,$i \ge j$,$i,j = 1, \ldots ,n,$, are independent for each $n$, whereas $\mathbf{E}\xi _{ij}^{(n)} = a_{ij}^{(n)} ,\operatorname{Var}\xi _{ij}^{(n)} = \sigma _{ij}^{(n)}$, $i \ge j$, $i,j = 1, \ldots ,n,$
$$ \sup_n\max_{i = 1, \ldots ,n} \sum_{j = 1}^n {\sigma _{ij}^{(n)} < \infty} ,\qquad \sup_n\max_{i = 1, \ldots ,n} \sum_{j = 1}^n {| {a_{ij}^{(n)} }| < \infty ,} $$
and the Lindeberg condition is satisfied for these entries: for any $\tau > 0$,
$$ \lim_{n \to \infty }\max _{i = 1, \ldots ,n} \sum_{j = 1}^n {\mathbf{E}[ {\xi _{ij}^{(n)} - a_{ij}^{(n)} } ]^2 \chi \{ {|\xi _{ij}^{(n)} - a_{ij}^{(n)} | > \tau }\} = 0.} $$
We prove that $p\lim _{n \to \infty } \sup _x |\mu _n (x) - F_n (x)| = 0$, where $\mu _n (x) = n^{ - 1} \Sigma _{k = 1}^n \chi (\omega :\lambda _k < x),\lambda _1 \ge \cdots \ge \lambda _n $ are the eigenvalues of the random matrix $\Xi _n = (\xi _{ij}^{(n)} )_{i,j = 1}^n ,F_n (x)$ are distribution functions, the Stieltjes transforms of which are equal to
$$ \int {(x - z)^{ - 1} dF_n (x) = n^{ - 1} \sum_{i = 1}^n {c_i (z),\quad z = t + is,\quad s \ne 0,} } $$
and the functions $c_i (z)$ satisfy the system of equations
$$ c_i (z) = \left\{ {\left[ {A - zI_n - \delta _{pl} \sum_{s = 1}^n {c_s (z)\sigma _{sl}^{(n)} } } \right]^{ - 1} } \right\}_{ii} ,\quad i = 1, \ldots ,n, $$
where $\delta _{pl} $ is the Kronecker symbol, $A_n = (a_{ij}^{(n)} )_{i,j = 1}^n ,I_n $ is the identity matrix of the $n$th order.

Keywords: spectral functions of random matrices, Stieltjes transform, canonical spectral equation, symmetric real-valued random matrices, Lindeberg condition, eigenvalues of a random matrix.

Received: 09.04.1992


 English version:
Theory of Probability and its Applications, 1994, 39:4, 685–691

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026