RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1964 Volume 9, Issue 2, Pages 343–352 (Mi tvp380)

This article is cited in 30 papers

Short Communications

On Local Limit Theorems for the Sums of Independent Random Variables

V. V. Petrov

Leningrad

Abstract: Let $X_1,X_2,\dots$ be a sequence of independent identically distributed random variables, ${\mathbf E}X_1=m$, ${\mathbf D}X_1=\sigma^2>0$, and ${\mathbf E}|X_1|^k<\infty$ for some integer $k\geqq 3$. The following theorem is proved:
Suppose that the variable $Z_n=\dfrac1{\sigma\sqrt n}\Bigl(\sum\limits_{j=1}^n{X_j-nm}\Bigr)$ has an absolutely continuous distribution with bounded density function $p_n(x)$ for some integer $n=n_0$. Then there exists a function $\varepsilon(n)$ such that lim $\varepsilon(n)=0$ and relation (1) is fulfilled.
A similar theorem is proved for the case when $X_1$ has a lattice distribution. Some consequences of these theorems concerning convergence to the normal law in the mean are discussed.

Received: 15.05.1962


 English version:
Theory of Probability and its Applications, 1964, 9:2, 312–320

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026