RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2001 Volume 46, Issue 4, Pages 724–743 (Mi tvp3797)

This article is cited in 6 papers

Lyapunov-Type Bounds for $U$-Statistics

I. B. Alberinka, V. Yu. Bentkusb

a University of Nijmegen, Department of Mathematics
b Institute of Mathematics and Informatics

Abstract: Let $X_1,\dots,X_n$ be independent identically distributed random variables. An optimal Lyapunov (or Berry–Esseen) bound is derived for $U$-statistics of degree 2, that is, statistics of the form $\sum_{j<k}H(X_j,X_k)$, where $H$ is a measurable, symmetric function such that $\mathbf{E}\,|H(X_1,X_2)|<\infty$, assuming that the statistic is nondegenerate.

Keywords: $U$-statistics, Lyapunov-type bound, Berry–Esseen bound, rate of convergence, normal approximations.

Received: 26.01.2000

Language: English

DOI: 10.4213/tvp3797


 English version:
Theory of Probability and its Applications, 2002, 46:4, 571–588

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026