RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1994 Volume 39, Issue 1, Pages 191–200 (Mi tvp3766)

This article is cited in 10 papers

Short Communications

On the rational pricing of the “Russian Option” for the symmetrical binomial model of a $(B,S)$-market

D. O. Kramkov, A. N. Shiryaev

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We present in the binomial model of Cox, Rubinstein and Ross the closed form solution for the “Russian option”, i.e., the American type option with the reward sequence $f=(f_n)_{n\ge 0}$ given by
$$ f_n(\omega)=\beta^n\max_{k\le n}S_k(\omega), $$
where $\beta$ is some discounting factor, $0<\beta<1$. This option was introduced earlier by L. Sheep and A. N. Shiryaev [3], in the framework of the diffusion model of Black and Sholes.

Keywords: the binomial Cox, Rubinstein, and Ross model, American option, “Russian option”, symmetric geometrical random walk, optimal stopping rules.

Received: 05.07.1993


 English version:
Theory of Probability and its Applications, 1994, 39:1, 153–162

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026