RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2002 Volume 47, Issue 3, Pages 452–474 (Mi tvp3676)

This article is cited in 1 paper

Absorption probability at the border of a random walk in a quadrant and a branching process with interaction of particles

A. V. Kalinkin

N. E. Bauman Moscow State Technical University

Abstract: Simple integral representations are obtained for the absorption probability at a boundary point of a random walk on the integer-valued lattice of a quadrant under various hypotheses about the distribution of the jumps of the random walk. To get the representations we apply the method of exponential generating function for solving a stationary first (backward) system of Kolmogorov differential equations suggested in [A. V. Kalinkin, Theory Probab. Appl., 27 (1982), pp. 201–205] and [A. V. Kalinkin, Sov. Math. Dokl., 27 (1983), pp. 493–497].

Keywords: absorption probability of a random walk, branching process, exponential generating function, hyperbolic type partial differential equation, Darboux–Picard problem, exact solutions, Chebyshev polynomials.

Received: 08.09.2000

DOI: 10.4213/tvp3676


 English version:
Theory of Probability and its Applications, 2003, 47:3, 469–487

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026